THE MATTRESS

Thanks to Gunnar Bäckstrand of HGB BACKSTRAND AB I now have an excellent mattress which will protect me from the cold Cape Horn waters. It is 6 cm thick made of closed cells which means that it cannot get wet. Whith 6 cm mattress and 4 cm divinycell foam in the hull I will have a total of 10 cm or 4 inches insulation. If I then also can get hold of some old blankets in Argentina I will be worm and snug in my boat.

The picture below shows me cutting the mattress material to size.

The picture below shows the mattress in the bunk. The size of my bunk is length 191 cm, wide at feet 40 cm, wide at head 68 cm. It is a bunk impossible to fall out of. Very secure.

MORE ABOUT THE LEAD WEIGHTS


Now all the lead weights are cowered with kevlar for wear resistance and to prevent myself by being killed by lead poisoning. The front end have gotten a teflon patch to slide more easily into the lead chambers. The stainless steel handles are in the back.Without them it would be very difficult to handle the weights in heavy weather.

Below is a picture with all the weights secured in the extreme aft position. Their intended position when im running down wind in heavy seas, to give the boat directional stability and to increase her mass moment of inertia to help prevent pitchpooling.

AT THE FOUNDRY

I did not consider my self competent to do high quality lead castings with no porosity or hollows. After much searching I found Bo in the village of Blomstermåla (its name means “the painted flower”) Here Bo is outside his foundry.

After having put the model in sand the inlet and a substantial raiser is added.

More sand is poured

The sand is compacted.

The lead is poured.

Here is my weight with inlet and raiser which are sawn off with a bandsaw.

The pieces with its stainless steel handle weigh 14 kilos or a bit more than 30 pounds each. In the boat there is place for six making 84 kilos, the weight of a big man. I always make a few extra. I have six spare ones to select the best and in case I make a mistake. Below is some of them.

Below the final product swept in kevlar for wear and with its handle.

Thank Bo and the personal at Blomstermåla foundry for a well done job.

CAPE HORN, THE NEW CHALLANGE

My plan was to sail Yrvind ½ to Australia, but after working with her for more than six months, finding ways to make her more weatherly and seaworthy I now think she is capable of more. I now like to try an east to west Cape Horn rounding in her.
I dont think that it will be easy, but I think if life is not difficult its not worth living. If you work to the limits of your capacity you do not get bored and you do not need entertainment and drugs.

The east to west rounding is called the wrong way. It is nothing wrong about it. Cape Horn earned its reputation by forcing Captain Bligh to give up, by giving the 1849ers who sailed to California looking for gold a harsh time. Going east about helped by wind and current is not the same achievement, nor is it to hide behind the nearby islands or in the Beagle Channel until you have a god weather report and then make a quick dash around.

The sailing lores old and well established starting point is latitude 50 south in the Atlantic, its finishing point is latitude 50 south in the pacific. It is an east to west rounding.
Singlehanded in a small boat that challenge is difficult. In fact to my knowledge only one person has succeeded doing that in a boat smaller than 60 feet. That person is Alfon Hansen from Norway. He sailed in Mary Jane a 36 feet gaff rigged Colin Archer. He had no engine. He left Buenos Aires in 1934. He arrived in Isla Chiloe 110 days later. After a brief rest he sailed north. He disappeared at sea in a storm. Only wreckage of Mary Jane was found.

Some people may think it is hubris to try to round the Horn in a much smaller boat, but i do not want to be remembered as a down wind sailor.

Below is my planned route, from Mar del Plata in Argentina to Valdivia in Chile.

Below is a photo of Al Hansen with his cat and dog.

Below if a a photo of Mary Jane.

Below is particulars of Mary Jane.

MORE WORK ON LOCKERS

The vertical subdivisions behind the side panels are now done.There are four on each side in the fore cabin and the same amount in the aft cabin. I have now also begun work on the shelves. There are nine lockers on each side in the fore cabin and six on each side in the aft cabin, a total of thirty. There are more than three hundred liters of stowage for books and food. There are also eight water jugs under the aft deck, five liters each, four on each side. They are connected to my water catchment system. A small slow boat on a long voyage needs a lot of secure stowage.

Below is a picture of the fore cabin. At the bottom of the picture on the starboard side can be seen the shelves, the horizontal division of the storage space, coming up.

Below is one of the shelves. The clamps hold iron angels which the shelves rest on. the lead piece holds the shelf in place while the fillets cure.

Before this was done I had made the lead chambers here is the six ones on the starboard side. There is a total of eighteen. At this moment the lead weights is being poured at Blomstermåla foundry. More about that later. Each weight is 14 kilos or about 31 pounds

VENTILATION FOR HEAVY WEATHER

My heavy weather ventilation system.
First I put in the two bulkheads.

The ventilation channels are built on the main bulkhead.

I wish I could draw as well as Matt. As it is you have to do with this. The top picture show the boat on even keel healing 0 degrees. The air comes in from the deck and is ducted in an L-shaped channel down and across the boat.

The middle picture shows the boat heeled 90 degrees. Part of the deck and one ventilator then comes under water. It flows down the channel, but the bottom part of the L is now vertical and the water gets no further.

The bottom picture shows the boat healed 180 degrees. Now the first part of the channel is vertical preventing water from entering the cabin.

This is the fundamental theory. However as air not only have to enter but also leave the cabin two sets of channels is necessary. Also to get distribution of the air the entry and outlet have to be as far away from each other as is practical. Therefore the second channel is an L with an added bend making it an U. With this arrangement air can enter at the bottom of the boat and leave at the top or vice verse. This demands a drain in the bottom of the U were water can be let out in the bilge after an capsize. I use two small carbon pipes.

As there is plenty of wind pressure in a gale my channels have a small section 3 by 4 centimeter roughly equivalent to 1 by 2 inches. Still they are much bigger than my nostrils.

I build the channels of 1 cm divinycell which I edgeglue to the bulkhead.

When the first U is done I do the second L. The also function as a seat.

Here the system is seen from above. When the deck house is built I will continue the channels to the top of it.

Here is a view from below. The two black carbon drainers can be seen.

SIDE PANELS

Below can be seen the side panels getting fitted. I sleep on the floor in the forward part of the boat. The read containers are NM-epoxy, but I use them as mock up for water containers donated by Mellerud Plast.

Below is the sleeping room. The lead chambers can be seen at the bottom the other openings are for stowage. The top of the plywood side panel is reinforced with a U-profile in carbon. It contains handhold’s which also serve to fasten my safety belts into. All the black stuff is carbon prepreg cured in Marströms big autoclaves. Thanks to Göran and Pers kindness I have the full run of their workshop.

Below is the aft part of the boat. There I will have a nice seat and big windows to give me a good look at all the interesting things outside the boat. At the forward end is the ventilation channels.

The side panels fits snugly into the ventilation channels. With an epoxy fillet and some fiberglass I get a strong bound.

Below the the stowage hatches gets a coat of epoxy to seal the plywood. Note that the top of my home made work bench is made of a one inch thick steel plate.

Below, last but not least, me and Göran Marström in fromt of the big autoklaves. Thank you Göran for all the help.

YRVIND ½:s 18 LEAD CHAMBERS

Yrvind ½ has 18 lead chambers. They are placed in three groups, six chambers in each group. They are situated to port and starboard and aft close to the transom.

The ones to port and starboard helps to control healing. In strong winds, to get more righting moment, six lead weights, each 15 kilos or 33 pounds can be shifted to windward, either all or some of them. In light wind, to dig in the chine runners deeper the weights may be kept to leeward.
The aft group is useful when running before gales with breaking waves. Weight placed so far back moves the center of resistance aft and makes the boat more course stable. Also as the mass moment of inertia increases with the square of the gyr radius the boat will much better resist pitch pooling. Naturally it will also be more easily pooped, but as the boat is strong and waterproof it is in my case a better choice.

The above picture shows the lead weights placed to windward. As can be seen, so placed they give a greater righting arm compared to, if the same wight in the form of a 200 pound man would have been placed on the rail.

This is how the starboard lead chambers look. (later I will add lockers on top of them)

Lifting the lid one can see one mock up weight with a wedge on top of it. When moving the weights from side to side they slide across the floor up on a wedge an fall down behind it. Then another wedge is jammed in filling the gap to the roof. After that a small door is closed keeping the wedge in place. Now they can not get anywhere even if the boat is capsized or pitch pooled.

The wedge which is placed on top of the weights.

A mock up of one of the 15 kilo lead weights with its stainless steel handle.

The door which keeps the wedges in place.

On its back can be seen the locking mechanism which keeps the door in its place

Its made of a piston hank. The pieces which holds the sail and attach it to the stay is cut of with a hacksaw. A piece of string is attach to the nob to easier get a grip on the piston.
I use these piston hanks to lock many lockers.

MATT LAYDENS CHINERUNNERS BASED ON SWAMP THING, PARADOX & ENIGMA, ETC.

1985 designed and built Matt SWAMP THING 4m long 1.08 beam 19 cm draft with a cruising weight of 400 kilos she was the first boat to have chinerunners. Other boats based on the same concept is PARADOX and ENIGMA.
I consider it the most important innovation for small boats during the 20th century.

Here is PARADOX chinerunner.

Here is Matt with ENIGMA.

Here is a close up at ENIGMAS chinerunner.

This is how Matt did ENIGMAs chinerunner,


YRVIND ½ is a composite boat so I use a different technice.

First I attach plywood pieces insulated against epoxy with packing tape.

To them I clamp a glass fibre sheet. I fasten it to the hull with a fillet.

Now this shelf is ready to recieve several layers of glass fibre. As they are exposed I make them strong about 20 mm thick or about three quarter of an inch.

When i take the boat outside I will grind it to a nice shape.

Here is a drawing Matt made for a bigger boat.

The chinerunner concept looks simple, but dont fool yourself into thinking that they are just add ons. The idea of preventing leeway with the help of chinerunners, like most successful fluid flow devices, including the bumble bee, is a sophisticated concept. Matt is also taking help of the the lifting body concept and a large rudder.
The boat have to be relatively heavy to sink deep enough in the water, but small cruisers are not light. The ratio beam to draft has to fall within a narrow range. PARADOX beam is 1.23 m her draft is 0.23 m. YRVIND ½ has a beam of 1.3m and a draft of 0.22m
The concept gives shallow draft with no moving parts. The hull-shape gives a lot of stability as it like the catamaran quickly moves a lot of buoyancy to lee for a small angle of heel. It also gives a lot of flat floor on the inside, welcome on a small boat. It is also a hull-shape easy to build. Almost to good to be true. Strange that not more people take advantage of this windfall which has been around for quarter of a century.

STRONG POINTS OF ATTACHMENT

Archimedes said, “Give me a long enough lever and a fixed point and I can move the earth”. Like Archimedes I like strong points. There should be attachment points on a boat not only strong enough to lift the boat, but also they should be able to withstand dynamic loads.

These points of attachment where my first job on the new hull.

To make them really strong I decided to join the outer and inner laminations. Normally there is no problem of pealing away a bit of lamination, but to my joy the combination of the NM-epoxy and the new 100 kilo Divinycell gave me a lot of problem. After cutting the inner laminate with a diamond saw I put in a chisel to bend it away, but it did not budge, so in went another chisel. No progress. I put in a third chisel hammering on the different ones alternativly to no anvil. Finally after adding two big screwdrivers did I get the piece away. It had taken a lot of work but I was happy of this strenght demonstration from my new boat.

I included apiece of stainless pipe on each side to protect the hull from chafe.

Here they can be seen from the outside.

This is my fitting 30 mm stainless steel 2 mm thick with two pieces welded on to prevent the rope from sliding up or down. To hold it in place while gluing it to the boat I temporarily attached it to a piece of plywood.

Here it is in position.

Whit the help of a bit of a plastic bottle I created a form. Now I can laminate from the inside and get a new inner laminate with a the necesary distance from the stainless pipe to give place for the rope. When that is done I cut the outside skin and inside this created cave lives my point of attachment. I made one on each side of the transom and one in the stem. Now I can turn my boat into any desired position while building her. And of course later when cruising they are invaluable.

Here they are seen with ropes attached to them. By the way, the weight of the hull came out to 150 kilos.