WINDOWS

The windows in the forward deckshous are now in place thanks to Petter and G A Lindberg ChemTech AB.

I chose silicon becouse it is resistent to UV-light and weather. Butul and other componds may be stronger, but silicon holds 20 kilo in tension at each square centimeter giving a total strenght per window of about 4 tons wich is ample for a boat of about one ton. Also unless I go crazy the the force is unlikely to come from inside the boat.

Below are some pictures click once or twice to enlarge.

Rubber distances are placed to get the silicon acces to everywhere. This is important so that no hard spots get in contact with the tempered glass.

And last picture. Petter can relax after my harsch supervision.

To be continued…

Regards Yrvind

THE LEEBOARD ANGELS

In contrast to a centerboard can a leeboard be angled to give an optimum perfomance.

Consulting Matt Layden who knew a bit about the subject I have chosen 1 degree toe in and 12 degrees outward.

Tjat the board may rest agains a flat surface I have used sandpaper on a big particle board. Heavy work, but good results. Foto below.

This is how the angels came out after lamination with 8 layers 450 gram stiched glasfibre.

Leeboard up. The clamp will be replaced by a M 20 bolt and diameter 100 mm, 6 mm thick washer.

Leeboard down. This is the starboard side. Port side to be done.

To be continued…

Regards Yrvind

PROGRESS

There has been some progress. Things are finding there places.

Below the forward mastholders.

and aft mastholder. It was meant thet there should be one on each side also aft but unfortunatly it interfered with the two stearing lines, so one it is. It should have been at center but that interfered with the locker for the 15 kilo SPADE anchor so it is a bit offset to port.

There will be solar panels aft the main deck house. I do not like to walk on them so a rubrail on each side is added to take me back to the cockpit with its sculling oar and swim ladders.

The hardware to hold the rudders and yuloh is now fabricated.

The picture below show the mock up for the control lines.

My intention is to use the twin rudders in lieu of a drouge by angling them out. I must thus be able to control them individually. The idea of a connecting bar did not work to my satisfaction.

Becouse the rudders are at the side the tiller have to be angled at 20 degrees or so invards to give the lines scope to pull.

The control lines run the lenght of the boat making it possible to adjust them even from bed.

Below is a picture of my system for microadjusting them using a rigging screw. That system is sliding so that when courser adjustments are desired the thing can be mowed back or forth on a track. To get the lines from outside to inside seals are used running in pipes more about that later.

The rudderheads are now made and installed. They are about 5 cm thick. I could not use my drill press.  To be able to drill stright I looked at the mirror image of the drill in the fitting, when it was lined up with the the drill I was at right angle. Picture below.

Below is a picture of the rudders folded up.

The picture below show the rudder in the down position. The nut on the 20 mm bolt is welded to a wheel thuse making it easy to loch the rudders in the desired up or down position. The wheel is secured with a piece of string. Click on the picture once or twice to enlarge.

The rudders are rather large to get a lot of surface when using them as a drouge. Its nice to have control when running before a gale.

Here is a picture of the yuloh

Bengt Linden a supporter from Stockholm have also been visiting me.

Below next to the yellow boat that I sailed to Martinique with 2011.

Below inside the boat.

Bengt is bigger than me.

To be continued…

Regards Yrvind

YRVINDS SURVIVAL SEXTANT EXPLANITION AND HOW TO USE.

To invent a small cheap functional sextant capable of measuring any angel up to 90 degrees and accurate and rugged enough for life raft use my thinking went like this. I imaged a fixed angled Bris sextant, then one more to the left having a slightly smaller angle a third one to the left of that with an even smaller angle and so on down to zero. To the right I imaged a series of Bris sextant their fixed values kept increasing up to 90 degrees. After that I imagined the steps between them becoming smaller and smaller. After that still in my mind I glued them all together. Now I had a thought model of the finished product, one long sextant with twisted mirrors.

I made the first test by taking two strips of tinted semi reflecting acrylic glass and putting them together, one on top of the other. I joined them in one end, and then I twisted them at the other end to the desired angle and fastened them so together. I added a scale and a cursor to make reading easier because the human eye cannot focus so close. I have the option of adding shades to the cursor.

When taking a sight I hold the instrument close to my eye in a horizontal position, looking through it at the horizon. To move the image of the sun up and down I move my instrument sideways. When the sun is touching the horizon I note its sidewise position in relation to the scale and time it.

The next step is with the help of my position and the time to calculate the suns altitude. That way I find the corresponding altitude of my instrument at that point on the scale. I repeat the procedure for a few different angels.

As there are an infinite number of different angels there is no way I can calibrate them all, but that’s not necessary. It is enough to calibrate a few well spread out spots and make a table of them. To find any other angel I extrapolate or interpolate.

There is two ways to achieve the desired accuracy without a long and cumbersome instrument. One is to make a set of shorter ones, for example a set of three 30 cm long instruments with angels 0 – 30, 30 – 60 and 60 – 90, corresponds to a 90 cm long scale giving 1 centimeter for each latitude.

Eighteen instruments each 30 cm long will give a total length of scale of 5.4 meter long. Still the will require less space than a conventional sextant.

The other way is to make one instrument, like the Bris sextant with several mirrors that crate several images of the sun, spaced to the desired angels. It’s a neater solution but iterations or calculations will be needed to achieve the desired results.

The Bris Sextant and Yrvinds Survival Sextant are both interesting products and they complement each other. The Bris Sextant is extremely small and exact, but like a set of sockets has only fixed values. Yrvinds Survival Sextant is not so exact but can measure all altitudes a bit like an adjustable spanner.

Me, I have leave these experiments for time being to focus on my boat Ex Lex. Boatbuilding is also a lot of fun as is sailing the finished product.

ABOUVE. Long version of Yrvinds survival sextant. To take a reading, slide the sextant sidevays, that will move the sun upp and or down. When the sun touches the horizon time it and note how far  sidevise the sun is on the scale. No moving parts.

To be continued…

Regards Yrvind.

FINS AND HATCHES

Lenghtening the boat has giving me more storage space. The new hatches can only be reached from the outside. I will only transfere goods in fine weather but it is important that they are waterproof.

The picture below shows how they are tested upside down before being installed. Ping pong balls are floating in the water.

Click once or twice to enlarge

Also I have now shaped the 4 fins, 2 rudders and 2 leeboards. They are the same shape and size as to replace each other in the unlikely case of breaking. The tipp part is laminated of five 10 mm plywood laysers.

To be continued…

Regards Yrvind

RELIEF

I have two visitors. Falcon a yachtsman. He spent his first week in a hospital. Then he spent a week in a flat, then one month old he crossed his first ocean. He continued to live 18 years in the boat sailing the eternal endless sea. Now he is here to give me a hand.
Miki is also here. He is from Austria. He helping to modelling my boat in Rhino, like he did with Yrvind Ten.
I took the opportunity to ask my visitors to give me a hand in weighing Ex Lex.
We put everything ready into her, masts, spars, leboards, rudders, hatches ecetera. It came out to 415 kilo. Everything is strongly made and it has been a while scince I weighted her, so it was a releif.
Miki did a calculation in Rhino of the displacement and found that she will float nicely at 32 cm draft loaded to 1100 kilos.
That will take care of the weight problem I think.
Below some pictures, Falcon in the photo

To weigh the boat I hang here in two ropes and add the forces. The picture below show the wheight of the back rope.

This little calculation shows the wheight estimate.

Boat at present 415 kilo

Betteries 75 kilos

150 more kilos to finsh boat

Food 250 kilo

Water 100 kilo

Miscellaneous 100 kilo

Total 1100 kilo

I reserve the right to make miscalculations.

To be continued…

Regards Yrvind